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This paper is a complete review and unified treatment of recent results conerning 
the Neuberg-Pedoe and Oppenheim inequalities. Some new proofs and 
generalizations of these results are also added. 8 1988 Academic Press, Inc. 

This paper concerns results about the well-known Neuberg-Pedoe and 
Oppenheim inequalities for the areas of two triangles. Of course, these 
inequalities were considered in the book “Geometric Inequalities” [l] 
(hereafter referred to as GI), but after the appearance of this book many 
new results connected with these inequalities appeared. 

First, it was noted that Pedoe’s result from GI 10.8 was partly proved 
in 1891 by J. Neuberg, and many authors call this inequality the 
Neuberg-Pedoe inequality. Further, A. Oppenheim noted that his 
inequality from GI 10.12 is equivalent to the Neuberg-Pedoe inequality. 

Several papers.contain new proofs of the Neuberg-Pedoe inequality. In 
Section 1 of this paper, we shall show that the idea of a very simple Carlitz 
proof can be used in the proof of the Oppenheim inequality too. 

In Section 2, we give the comments of 0. Bottema on the mixed area of 
two triangles. It is interesting that one of his results is connected with a 
result of L. Carlitz, which we give in Section 3. An extension of the Carlitz 
results is also given. 

Refinements of the Neuberg-Pedoe inequality were given in several 
papers. We give some new proofs and some extensions of these results. We 
also give some similar results for the Oppenheim inequality. 

In Section 5 we consider some further generalizations of the Oppenheim 
inequality for triangles, quadrilaterals, and tetrahedrons. We also give 
some extensions of these results. 
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1. THE NEUBERG-PEDOE AND THE OPPENHEIM INEQUALITY 

THEOREM A. Let ai, hi, ci denote the sides of the triangle A,B,C, (i= 1, 
2) with areas F,. Then 

H> 16F,F,, (1) 

where H = C a:( -a: + b: + cz), with equality tf and only tf the triangles are 
similar. 

This is the well-known Neuberg-Pedoe inequality (see [2-6] or 
GI 10.8). 

There exist a series of proofs of the Neuberg-Pedoe inequality. For some 
of these proofs see also [7-111. L. Carlitz [S] gave a very simple proof of 
this inequality by using the well-known Aczel inequality, i.e., the following 
special case of the AczCl inequality: 

LEMMA 1. Let a = (a,, . . . . a,) and b = (6,) . . . . 6,) be two sequences of real 
numbers, such that 

a:-as-...- a:>0 and b:-b+..-b;>O. (2) 

Then 

(a:-a:-...-a~)(b:-b:-...-b~)~(a,b,-a,b,-...-a,b,)2 (3) 

with equality tf and only tf the sequences a and b are proportional. 

A. Oppenheim [12] (see also GI 10.12) gave the following result: 

THEOREM B. Suppose that Ai B,C, (i = 1,2) are triangles with sides 
ai, bi, ci and areas F;. Define numbers a3, b3, cj by a3 = (a: + a;)“*, etc., 
then a3, b,, C3 are the sides of a triangle with area F3, and the following 
inequality is r?alid 

FjaF,+Fz, (4) 

with equality if and only tf the triangles are similar. 

Remark. Note that a necessary and sufficient condition for triangularity 
is F*>O. 

Now, we shall show that the Oppenheim inequality is a simple con- 
sequence of the well-known Bellman inequality [ 131 (see also [ 14, p. 381 
or [ 15, p. 58]), i.e., of the following consequence of Bellman’s inequality: 
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LEMMA 2. Zf a and b are sequences of nonnegative real numbers which 
satisfy (2), then 

(a: - a: - . . . - az)l12 + (6: - b$ _ . . . _ bi)‘iz 

<((aI+b,)2-(a2+b,)2--~~-(a,+b,)2)1/2 (5) 

with equality if and only if the sequences a and b are proportional. 

Proof of Theorem B. To prove (4) we take 

4F, = ((a: + b: + c:)‘- 2(a: + b;‘+ cj))‘j2 

and similarly for F2 and F3. Now put 

aI --) a: + bf + c:, a 2 + 2 l12a2 1, a 3 -+ 2’12b2 1, a 4 + 2’12c2 17 

b,--+a:+bz+c$, 6, + 2112a:, b, -+ 21i2b;, 6, --f 21/2c;, 

Then (2) holds and (5) becomes 

with equality if and only if the triangles are similar. 

Remarks. (1) By the same substitution that converts Lemma 2 
Theorem B, one also derives Theorem A from Lemma 1. 

(2) Oppenheim noted in [ 163 that Theorems A and B are equivalent. 
He also noted that Theorem B (therefore also Theorem A) is equivalent to 
GI 14.1. Analogously, we can easily show that Lemmas 1 and 2 are also 
equivalent. 

(3) Further, it is known that Lemmas 1 and 2 can be easily proved 
by using the Cauchy and the Minkowski inequalities, respectively (see 
[17]). Therefore, we can give a simple proof of Theorems A and B by 
using these inequalities too. 

(4) A generalization to several dimensions of the Neuberg-Pedoe 
inequality is given in [18]. The same is also valid for the Oppenheim 
inequality (see Section 5 of this paper or [ 16)). A generalization for two 
n-gons of the Neuberg-Pedoe inequality is given in [19]. 
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2. COMMENT BY O.BOTTEMA: ON THE MIXED AREA OF Two TRIANGLES 

2.1. For the area F, of the triangle with sides a,, 6,, c, and the 
angles A r, B, , C, we have 

16Ff= -a~-b’:-c~+2bfc:+2c:af+2a:bf, 

a homogeneous quadratic form of a:, b:, c:. For a second triangle with 
sides a2, b,, c2 the analogous formula holds. We consider the expression 

16F;?,= -a:,:-b:bz-c~c~+(b~c~+b~c~) 

+ (c:a: + czaf) + (afb: + aibf), (6) 

which is the “polar form” of the two quadratics. We shall call F,, the 
“mixed area” of the two triangles. We have 

8F2 =b2c2+b;c;-2b,czbzc, cos A, cos A,. 12 I 2 

Hence Ff-, > 0: the mixed area is a real number. 
Obviously F,, = F,, , F,, = F,, Fz2 = F,. 
Furthermore 

(7) 

8(F& - F,, F,,) = b:c; + b;cf - 2b,c,b,c, cos (A, - A2) (8) 

and therefore 

which is the Neuberg-Pedoe inequality. 

2.2. Bottema met the concepts in 2.1 by dealing with the following 
problems. In a plane, two triangles A, B, C, and A,B,C, are given. 

Question. Is it possible to place them one to the other in such a way 
that A, A,, B, B,, and C, C, are parallel? 

Answer. It is possible if and only if 

2Ff, 3 F:, + Fi2. (9) 

The same condition holds for two triangles in space if one is a parallel 
projection of the other. 

A Second Problem. Once more two triangles A, B, C, and A, B,C, are 
given. Is it possible to place A2 B, C, such that it is an inscribed triangle of 
A, B, C1 (A2, B,, Cz on the corresponding sides-if necessary extended-of 
A,B, C,)? 

409/129:1-14 
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Answer. The necessary and sufficient condition reads 

2F;, -t 2F, F, -F; > 0. 

The above lines are a summary of papers [20, 211. 

3. ON A RESULT OF L. CARLITZ 

L. Carlitz [22] proved the following result: 

THEOREM C. If the differences 

a:-as, b; -b;, c; - c: 

are all positive or ail negative and in addition the numbers 

1 a2 - a2 1 l/2 
1 2 f 1 b: - 6; ( 1’2, 1 c; - c2 1 I’* 2 

form the sides of a triangle A (possibly degenerate), then 

8(F; + F,z) - H = 8F2(A), 

where F(A) denotes the area of A. Otherwise 

Ha8(F:+Ff). 

(10) 

(11) 

(12) 

(13) 

Remark. Inequality (13) is the same as (9), so the above result gives 
more information on triangles satisfying the first Bottema question from 
Section 2. 

Now, we shall give an extension of Theorem C, i.e., the following 
theorem is valid: 

THEOREM D. If the differences (10) are all positive or all negative and in 
addition the numbers (11) form the sides of a triangle A (possibly 
degenerate), then equality (12) and equalities 

2F; + 2F; - F; = F2(A), (14) 

and 

4F,z - H = 4F2(A) (15) 

are valid. Otherwise 

H>4F,2>8(Ff+F,Z). (16) 
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Proof. The following identity is given in [22]: 

16(F; + Ff) - 2H = T, (17) 

where 

T= 2 c (a; - a;)(b; - 6;) -1 (a; -a;)‘. 

Note that the following identity is also valid: 

16(F;+F,2)+2H= 16F$ 

So, we have 

32(F; + F;) = T+ 16F:, 

16F;-4H= T. 

(18) 

(19) 

(20) 

Note that if the differences (10) are all positive or all negative and in 
addition the numbers (11) form the sides of a triangle A, then T= 16F*(d). 
In this case we have 

S(F;+F;)>4F:> H. 

Otherwise T<O, so from (19) and (20) we get (16). 

Remark. Obviously, (16) is the refinement of (13). 

(21) 

4. SHARPENING THE NEUBERGPEDOE AND THE OPPENHEIM INEQUALITY 

K.S. Poh [23] proved the following refinement of (1): 

THEOREM E. Let the conditions of Theorem A be satisfied, and let 

Then 

H>E>16F,FZ (22) 

and E = 16F, F2 $and only if the two triangles are equibrocardian, i.e., if and 
only if the two triangles have equal Brocard’s angles. Moreover, the following 
are equivalent: 

(i) H= 16F, F2, (ii) H= E, (iii) AAIB,C,~AA2B2C2. 
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J. F. Rigby [24] gave a short proof of Theorem C. In the proof of 
inequality 

E> 16F, F, (23) 

he starts from the fact that 4F,= ,/m., where Xi = C a:, Yj= C a4 
(i= 1,2). 

We shall note that (23) is also a simple consequence of Lemma 1. 
Indeed, we have 

where we used (3) for rt = 2. Equality occurs if and only if q/Y1 = G/Y*. 
Since [23] 

~a4=8F2((~cotgA)2-I) and xa2=4FxcotgA, 

condition for equality is equivalent with 

(~cotgA,)1=(~cotgA2)2> 

i.e., 

xcotgA,=xcotgA, (24) 

since C cotg Ai 2 fi (i= 1,2) (GI 2.38). 
In the formuation of his theorem, Poh gave Eq. (24) for E = 16F, F,. We 

remark that cotg w = C cotg A, o being the Brocard angle of the triangle, 
so (24) becomes cotg w1 =cotg 02, i.e., o1 =02. Therefore E= 16F1 F2 if 
and only if the two triangles are equibrocardian. 

Further, we shall note that inequalities (22) can be proved by the 
method of Carlitz, if instead of Lemma 1 we use the following refinement of 
AczCl’s inequality: 

LEMMA. 3. If the conditions of Lemma 1 are satisfied then 

(a:-ai-...-ai)(bf-bz -..._ bi) 

<(a,b,-(a2+~.~+a2)“2(b2+ 2 ” 2 
. . . + p)‘y 

<(a,b, -a2b2- . ..--a.b,)‘. 

Proof: By substitution, 

(25) 

n = 2, aI -‘al, b, -+h, a2-+(a:+...+az)1’2, 

b, -+ (b; + . . . + b;)“*, 
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from Lemma 1 we get the first inequality, and using the Cauchy inequality 
we get the second inequality. 

Of course, we can give a similar extension of Theorem B: 

THEOREM F. Let the condition of Theorem B be satisfied. Then 

F,aG>F,+Fz, (26) 

where G = f((c a:)‘- 2((C a;)“’ + (C ai)“2)2)1’2, and F, + F2 = G if and 
only if the two triangles are equibrocardian. Moreover, the following are 
equivalent: 

(i) F,=F,+Fz, (ii) F,=G, (iii) dA,B,C, - AA2B2C2. 

The proof is similar to the proof of Theorem E. (We use Lemma 2 
instead of Lemma 1 for the second inequality, and Minkowski’s inequality 
instead of Cauchy’s in the first inequality.) 

We also note that inequalities (26) can be proved if instead of Lemma 2 
we use the following result: 

LEMMA 4. If the conditions of Lemma 2 are satisfied then 

(a: - ai - . . . -a:)‘/’ + (by _ 6: _ . . _ bz)“* 

< ((a, + b,)2 - ((a$ + . . . + a:)“‘+ (6: + . . . + bi)112)2)1/2 

<((a, +b,)2-(a2+b2)2-~~~-(a,+n,)2)2. 

Proof is similar to the proof of Lemma 3. 
Chia-Kuei Peng [25] proved the following sharpening of the 

Neuberg-Pedoe inequality: 

THEOREM G. Let the conditions of Theorem A be satisfied. Then 

(27) 

where S,=Caf andS2=Ca:. 

Here, we shall show that the following result is valid: 

THEOREM H. With the same conditions as in the previous theorem, 

(28) 



204 MITRINOVIk AND PECARIk 

Proof Of course, we need only prove 

E>8 

We have 

where we used the arithmetic-geometric mean inequality and the formula 

16F2=S2-2xa4, i.e., 1 a4 = $’ - 8F2. 

Gao Ling [26] gave two refinements of the Neuberg-Pedoe inequality. 
Here we shall give some extensions of his results. 

THEOREM I. Let A,B,C,D, (i= 1,2) be two quadrilaterals inscribed in 
circles, let B,C;=a,, CiDi=bi, DiAi=ci, and AiBi=di (i= 1, 2), and let F, 
denote the areas of A,B,C,D, (i= 1,2). If 

K=4(b,cl+d,a,)(b2c2+d2a2)-(a:-b:-c:+~)(a:-b:-c:+d:), 

then 

O<K-- 16F,F2<8(blcl +dla,)(b2c2+d,a2) (29) 

with equality if and only if corresponding angles B, and B2 are equal. 

Proof: Since angles B, and D, are supplementary, we have 

2F,=(b,c,+d,a,)sinB,. 

On the other hand, from the cosine law 

A,Cf=b:+cf+2b,c,cosB,=df+af--2d,a,cosB, 

and hence 
a:-bf-cf+df=2(b,c,+d,a,)cos B1. 
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Using these equalities and similar equalities for the quadrilateral 
A,B,C2D2, we obtain 

K-16F,F,=4(b,c,+d,a,)(b,c,+d,a,)(l-cos(B,-B,)) 

and (29) follows immediately since 

-l<cos(B,-B,)<l 

with equality if and only if B, = B,. 

Note that the following result is a simple consequence of Theorem I: 

THEOREM J. (i) Let the conditions of Theorem A be satisfied. Then 

2(b,c,-b,c,)2<H-16F,F,<2(b,c,+b,c,)2 (30) 

with equality if and only if A, = A,, and 

with equality if and only if the two triangles are similar. 
(ii) Let the conditions of Theorem B be satisfied. Then 

+(b,c2-b,c,)2<Ff-(F,+F2)2<+(b1c2+b2c,)2 

with equality if and only if A, = A,, and 

with equality if and only if the two triangles are similar. 

Remarks. (1) Gao Ling [26] proved only the first inequalities in (29) 
and (30). The above proof is only a simple extension of his proof. 

(2) Now, we shall note that (30) follows directly from Bottema’s 
identity (8), i.e., 

H-16F,F2=2(b;c;+b;c:)-4b1c2b2clcos(A,-A,) 

since -1 <cos(A,-A,)<l. 

5. FURTHER GENERALIZATIONS OF THE OPPENHEIM INEQUALITY 

In this Section we shall give some generalizations of the Oppenheim 
inequality for triangles, quadrilaterals, and tetrahedra. 
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First, we shall give the following Oppenheim generalization of his 
Theorem B: 

THEOREM K. Suppose that A,B,C, (i = 1, 2) are two triangles. Define for 
any p 2 1, a = (up + a$)L’p, etc. Then a, 6, c are the sides of a triangle. The 
three areas are connected by the inequality (zfp = 1 or 2 or 4) 

FP12 > FPl2 + FPf2 
’ 1 2 

with equality if and only if the triangles are similar. 

(31) 

Oppenheim [16] also showed that the inequality does not hold for p > 4, 
and he also gave the conjecture that Theorem K holds for 1 dp < 4. 

The case p = 2 is Theorem B. Note that a generalization of this case for n 
triangles was given in [27], and one result similar to Theorem K was given 
in [28, p. 391. The case p = 1 is again given elsewhere (Math. Mug. 56 
(1983), 19; Amer. Math. Monthly 90 (1983) 522-523). But, one similar 
result for n triangles was first given by M. S. Klamkin in [27]. The proof 
from the Monthly is similar to Klamkin’s proof. Note that Oppenheim’s 
proof is simpler. He used another inequality of Minkowski (see [29, p, 881 
or [14, p. 261). 

A. Oppenheim [30] also proved the following result: 

THEOREM L. Suppose that A, B, C, D, , A, B, C, D, are two inscribable 
quadrilaterals of sides a,, . . . . d, and a,, . . . . d,. Define a, etc., by 

a = (up + a$)‘lP, etc. (pa 1). 

Then there is an inscribable quadrilateral of sides a, etc.; the areas satisfv 
vor p = 1, 2,4) the inequality (3 1) with equality if and only if the given 
polygons are similar. 

The Oppenheim conjectures that Theorem K and L are also valid for 
1 <p < 4 were proved by C. E. Carroll [31], i.e., the following results are 
valid: 

THEOREM M. Let the conditions of Theorem K be ful$lled. Inequality 
(3 1) is valid in the case when 1 <p < 4, too. Apart from trivial cases with 
p = 1 and F, = Fz = 0, equality holds if and only if 

a,/az = b,fb, = c,/c2, (32) 

THEOREM N. Zf p 2 1, tf the triangles having areas F, and Fz are acute or 
right triangles, and if a, b, c, F are as in Theorem K, then (31) holds with 
equality tf and only if (32) holds. 
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THEOREM 0. Zf 1 <p < 4 and zf two quadrilaterals have sides a,, . . . . d, 
and a2, . . . . d2, then a = (up + a4)‘lP, etc., are the sides of a quadrilateral, and 
the maximum areas satisfy (31). Equality holds iff the sets a,, . . . . d, and 
a2, . . . . d, are proportional; but there are trivial exceptions with p = 1 and 
F,=F,=O. 

Now, we shall show that we can give generalizations of these results for 
the case of n triangles or quadrilaterals. In our results, trivial equality cases 
are not included. 

THEOREM P. Suppose that A, B,C, (i = 1, . . . . n) are n triangles. Define for 
anyp31 

etc., 

where wi 2 0 (i = 1, . . . . n). Then a, b, c are the sides of a triangle. Zf 1 Qp < 4, 
the n + 1 areas are connected by the inequality 

n 
FPJ2 > c wiFf12 (33) 

,=I 

with equality tf and only zf the given n triangles are similar. 

Proof In the case wi= 1 (i= 1, . . . . n) we shall use the mathematical 
induction method. Indeed, for n = 2, this is Theorem M. Suppose that 
Theorem P for wi = 1 (i = 1, . . . . n) is true for n - 1 and put 

ai. + ai (i = 1, . . . . n - 2) ai-, -+ (a,“-, + a,P)lIP, etc. 

Then from (F’)““> n i Theorem M gives (F-; (F:)P’2 follows Fp’2 > XI= i Fip”, because 
, pl2 2 F;? , + F;/“. 

ai -+ w,“Pai, etc. (i = 1, . . . . “n)t we get our result. 
Further, by substitution 

Similarly, we can prove the following two theorems: 

THEOREM Q. Zn the previous theorem let p 2 1, and let the given n 
triangles be acute or right triangles. Then (33) holds with equality tf and only 
if the given n triangles are similar. 

THEOREM R. Zf 1 dp < 4 and if n quadrilaterals have sides ai, bi, ci, di 
(i= 1 9 -.*, n), then a = (XI= 1 wiaf)liP, etc., are the sides of a quadrilateral, 
and the maximum areas satisfy (33). Equality holds tf and only tf the sets ai, 
hi, ci, dj (i = 1, . . . . n) are proportional. 

Remark. It is known that, if a quadrilateral has sides of fixed length, 
the area is maximum when the vertices lie on a circle. 

Now, we shall give two applications of Theorems P and R. 
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COROLLARY 1. Of all triangles with the same perimeter, the equilateral 
triangle has the greatest area. 

Proof Put C;= r wi = 1, then from (33) for p = 1 it follows that the sym- 
metric function F”’ is concave. Therefore F112 is a Schur-concave function 
(see [ 32, p. 64]), and the same is valid for F (see [ 32, p. 61 I), a known 
result [32, p. 2091. A simple consequence of this result is 

F f 1 a, f 1 a, f 1 a 2 F(a, b, c), 

i.e., Corollary 1. 

Similarly, we can prove (see, for example, [32, p. 2091): 

COROLLARY 2. Of all quadrilaterals with a given perimeter, the square 
has the greatest area. 

As we said in Section 1, A. Oppenheim noted that the generalization of 
Theorem B in several dimensions is also valid. As an example, he gave the 
following result: 

THEOREM S. Zf tetrahedra T, T,, T, have edges connected by the 
2- 2 equattons a - a, + a:, etc., then their volumes satisfy the inequality 

v213 2 v-y3 + 6” 

with equality of and only if T, and T2 are similar. 

Similarly to the proof of Theorem P we can prove: 

THEOREM T. Zf tetrahedra T, Ti (i = 1, . . . . n) have edges connected by the 
equations a2 = I:=, wia:, etc., where w, (i = 1, . . . . n) are positive numbers, 
then their volumes satisfy the inequalities 

v2’3 2 i wi v-y 
i= I 

with equality tf and only tf the T, (i = 1, . . . . n) are similar. 

Remark. The method from the proof of Theorem P can be used for 
generalization of some other similar results: 

(1) Let the conditions of Theorem P be satisfied for p = 2. Then 

n 

h23 1 w,hf, 
i=, 

(34) 
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where hi is the altitude of the triangle A,B,C, (i= 1, . . . . n), and h is the 
altitude of the triangle with sides a, b, c, with equality only for similar 
triangles. 

(2) Let the conditions from (1) be satisfied, then analogous results 
for the circumradii are valid, 

” 
R2< c wiR; 

i= 1 

with equality either if the given triangles are similar or if the triangles are 
right angled, with vertices corresponding. 

(3) Let the conditions of Theorem T be satisfied, then the 
corresponding altitudes satisfy (34). 
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